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Abstract-To simulate a continuous casting process the temperature and flow field during solidification 
of a pure metal in a moving slab is considered. The analysis includes natural convection effects in the 
liquid pool. 

Strong natural convection flows occur at Grashof numbers of 105-10’. However, for the range of 
parameters investigated the natural convection had a negligible effect on the solid-liquid interface position. 

Various qualitative aspects of the combined forced and natural convection flow field in the liquid pool 
are presented. Even for very strong natural convection the effect of the flow field on the temperature field 
remains relatively minor, its predominant tendency is to enhance the formation of an almost isothermal 

region at the bottom of the pool. 

NOMENCLATURE 

specific heat ; 
gravitational body force component in X- 

direction ; 

Grashof numbers, Gr = “fT,- “‘,’ ; 
2 

scale factor of curvilinear coordinate 

system; 
thermal conductivity; 
number of node points in the quarter-circle; 
unit vector normal to the interface, pointing 

into the solid region; 
number of node points in the half-circle; 
nondimensional dynamic pressure; 

Peclet number of the solid; 
Cauchy principal value of an integral; 
dynamic pressure; 
Prandtl number; 
angular node spacing; 
radial polar coordinate; 
Reynolds number; 
Stefan number, nondimensional latent heat, 

_ 
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T 
7-3 
Tf, 
T 0, 
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u, 
u, 
Uf, 
u w> 

UO, 

u, 
u, 

V, 
V, 

V, 
w, 

WI, 
X, 

XP, 

ambient Stefan number, equation (78); 

temperature; 
transformation matrix; 
feed metal temperature; 
slab outside surface temperature; 
coordinate of (u, u) plane; 
nondimensional velocity component in x- 

direction, u = 3 ; 

UO 

X-component of velocity; 
radius ratio function in conformal mapping; 
feed velocity; 
withdrawal velocity; 
characteristic velocity; 
coordinate of (u, u) plane; 
nondimensional velocity component in y- 

direction, pi = & ; 

Y-component of velocity; 
angular distortion function in conformal 
mapping; 
velocity vector; 
complex variable of (u, v) plane; 
interface velocity normal to interface; 
nondimensional vertical coordinate, 
s = X/Y,; 
nondimensional liquid region pool depth; 
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vertical coordinate; 
liquid region pool depth; 
nondimensional horizontal coordinate, 

L’ = Y/Y,; 
nondimensional solid-liquid interface 
position; 
horizontal coordinate; 
characteristic dimension in Y-direction, half 

width of slab; 
solid-liquid interface position; 
complex variable of the physical (x, y) plane; 
thermal diffusivity; 

volumetric expansion coefficient, defined by 

(Al@; 
latent heat; 
complex variable of the mapped (5, q) plane; 

coordinate in (r, II) plane; 
nondimensional solid region temperature; 
nondimensional liquid region temperature; 
angular polar coordinate; 
conductivity-temperature ratio; 
coordinate in (v, p) plane; 

kinematic viscosity; 
coordinate in (v, 1) plane; 
coordinate in (5, ‘I) plane; 
density; 
radial polar coordinate; 
radial polar coordinate in (v,~) plane 

following general conformal mapping; 
nondimensional temperature scale, equation 

(75); 
angular polar coordinate; 

combined natural and forced convection 

stream function; 
complex variable of (v,~) plane; 
angular polar coordinate in (v, ,u) plane 
following general conformal mapping; 
nondimensional stream function, defined by 
(36) describing natural convection flow field; 
vorticity, defined by (39). 

Subscripts 
amb, ambient; 

c, cooling; 

L liquid region; 

& at solidification temperature; 

s, solid region; 

SH, superheat; 
0. reference variable in nondimensionalization. 

I. INTRODl (‘TION 

HEAT transfer with freezing or melting is of considerable 
importance, for instance during the casting of metals. in 
various chemical processes, as ablation during space 
craft re-entry, in icing of heat exchangers and wind 
tunnels, and also in various geological problems. Due 

to the release or absorption of latent heat during the 
change of phase such problems are generally nonlinear 
and substantially more difficult to solve than the 
corresponding single-phase problems. 

In this work the freezing front position, the 

temperature field and the liquid region flow field will 
be analyzed for the specific case of a continuous casting 

process using a pure metal or a eutectic alloy, solidifying 
along a plane freezing front. 

A typical continuous casting process is shown in 

Fig. 1 : liquid metal, usually 50-100°K above 
solidification temperature is supplied continuously at 
the top of a bottomless mold. In the mold, the molten 
metal is cooled indirectly, for instance, by circulating 

cooling water through passages in the mold walls. Due 
to this heat removal from the molten metal a solid skin 
is formed. If some of the core is still liquid at the bottom 
of the mold, the strength of the solidified skin must be 
sufficient to contain the remaining liquid and permit 
continuous withdrawal of the casting. 

HP- 

u- H 

I- 
xi I0 

Liquid b 
t 

Solid / 

L &_-__ 

+uw 

Mold, 
primary cooling 

(indirect) 

I 

-J ~_~ - 

Secondary cooling 

(direct) 

Superscripts 

1, iteration index; 

J> iteration index. 
FIG. 1. Schematic diagram of a continuous 

casting process. 
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Below the mold, in the secondary cooling zone, 

water sprays are usually applied directly onto the 
casting surface. 

For the configuration of Fig. 1 a forced flow field 
different from the slug flow of the solid will result if the 
feed metal is being supplied through a feed hole of 
smaller cross section than the casting. As the metal is 
supplied with superheat at the top of the liquid region 
and is cooled from the sides, a natural convection field 
must be expected in addition to the forced flow field. 

Previous work has almost exclusively concentrated 
on the temperature field and freezing front position, 

assuming the liquid to move in slug flow, with no 

motion relative to the solid region. The effect of the 
flow field on the freezing front position will be shown 

here to be generally small. However, in industrial 
casting processes the flow field has a significant effect 

on the solidification process itself and on the ultimate 
cast structure. Therefore, it is of great interest to have 
a good understanding of the flow field in the liquid 

region and its driving forces. Accordingly it is highly 
desirable to include convection effects in such analyses. 

2. PREVIOUS WORK 

Analytical closed form solutions of the pure conduc- 
tionproblem withsolidificationhaveonly been obtained 
forvery few extremely idealized situations. For example, 

the temperature field in a one-dimensional semi-infinite 
medium and with a boundary condition of the first 
kind at the outside surface (i.e. constant surface 
temperature) constitutes the famous Stefan problem, 
with its solution by Neumann [l]. For finite bodies 
and for less restrictive boundary conditions various 
approximate methods have been applied after introduc- 
ing further simplifying assumptions, such as neglecting 
the thermal capacitance in the solid region [2], as 

assuming the liquid to be initially at the freezing 
temperature, i.e. neglecting superheat [336]. 

For solutions in finite bodies, with superheat in the 
liquid, and in particular for multi-dimensional 
problems, numerical finitedifference or finite-element 
methods appear to offer the most practical approach 
[7-lo]. These contributions can be classified into two 
major groups. 

(1) The single-region methods apply the energy 
equation once over the complete domain, covering both 
phases. The latent heat release is simulated by 
appropriate modification of the specific heat or 
enthalpy. 

(2) The multiple-region methods apply the energy 
equation separately for each phase and specify the 
proper coupling boundary conditions between the 
phases. 

In general, the single-region approach leads to 

simpler models while the multiple-region approach 

offers more accurate solutions. Dusinberre [7] and 
Eyreset al. [8] for instance used the single region model 

in early work. Murray and Landis [9] developed two 
double-region methods for one dimensional freezing 
problems and demonstrated the increased accuracy of 
such models over the single-region methods. In the 
first of their models a fixed number of nodes is 

distributed uniformly in each phase and the size of each 
node varies as the one phase grows and the other phase 
disappears. In the second method the nodes are of 

equal size, fixed in space. and the finite difference 

equations at the node points next to the interface are 
adjusted to account for the interface travel between the 

node points. 
The second method has recently been extended to 

multi-dimensional transient freezing problems by 

Lazaridis [lo]. 
Almost all investigations considering the tempera- 

ture field during solidification in continuous casting 
processes have assumed slug flow in the liquid. Hills 
[l l] and Veynik [12] have applied approximate 
models, using an integral method, and neglecting 

superheat as well as axial conduction. Their solutions 
are much easier to use than the typical finite difference 
solutions, and they are valuable tools for the analysis 
of some continuous casting processes. However, their 
simplifying assumptions introduce inaccuracies, 

primarily in shallow pools, as well as in the bottom 

region of deep pools [ 131. 
Models including axial conduction and superheat 

in the feed metal have only been solved by numerical 
methods, using the single region approach. Klein [ 141 
and Adenis, Coats and Ragone [l !J] presented models 
for the solidification of alloys. Kroeger [13] handled 
the case of a pure metal. 

The effect of convection in the liquid pool of a 

continuous casting process has hardly received any 

attention until very recently. The first contribution 
appears to be by Szekely and Stanek [16]. They 
consider potential flow between the feed metal orifice 
and the liquidus front, and slug flow in the mushy and 
solid regions of a continuous casting process for alloys. 
Viscous effects and natural convection effects are not 
included. Their numerical solution of the energy 
equation also neglects axial conduction effects. Relative 
to a model assuming slug flow in the liquid. their 
results show a marked effect of the flow field on the 
liquid temperature field and on the liquidus front, but 
almost no effect on the solidus front. The implications 
of this result are important: Several models described 
above [ll-151 have solved the energy equation 
assuming slug flow in the liquid. Szekely and Stanek’s 
more general model of potential flow in the liquid 
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showed no significant effect on the solidus front. i.e. on 

the point offinal solidification and on the domain of the 
solid. Thus, the previous models which disregarded 
details of the flow field in the liquid region will be 
sufficient to predict the solidus front position and the 
solid region temperature field, as required for process 
design and productivity studies. However, the width of 
the mushy zone and the liquid temperature field have 

a significant effect on the solidification process and on 
the ultimate cast structure. Thus. consideration of 

liquid region effects is important in studies directed 
towards improving our understanding of the effects of 
the flow and temperature field on the solidification 

process and on the ultimate cast structure. 

3. PROBLEM SELECTION 

While Szekely and Stanek [16] considered some of 
the forced flow effects it is intended to concentrate here 
on the contribution of natural convection due to 

cooling from the sides, superimposed over a uniform 
forced flow field. The ratio Gr/Re’ of Grashof and 
Reynolds number for typical casting processes ranges 

from about l-10 and significant natural convection 
flows can therefore be expected. 

Considerations shall be confined here to plane front 
solidification of a pure metal, where the change of phase 
occurs at one distinct solid-liquid interface and at a 

constant temperature T,. For alloys the fluid velocities 
relative to the solid in the mushy region, are generally 
several orders smaller than those of the liquid region 
[ 171. Significant concentration gradients are in general 
also restricted to the mushy region, except, maybe. at 
the dendrite tips, But for liquid metals the Schmidt 

number SC = \sjLI is of the order of 100. and, therefore, 
even at the dendrite tips concentration gradients will 

occur only over distances small with respect to those 
for velocity and temperature gradients. Thus. the 
selected model of the flow field during solidification 
of a pure metal should also provide a first 
approximation for the liquid region flow field in many 
commercial alloys of practical interest. 

The feed flow at X = 0 will be assumed laminar, with 
uniform feed velocity over the complete cross section 
V = (U,,O) and with constant feed temperature 
Tf > T, (see Fig. 1). 

The geometry of a two-dimensional slab casting will 
be selected with no changes normal to the X-Y plane. 
Cooling of the casting outside surface will be modeled 
by a constant temperature boundary condition 
T= To < T,. In this case freezing will always begin at 
the feed level, X = 0. 

For this idealized process, the temperature and flow 
field in the liquid, the solid temperature field, and the 
freezing front position during steady state operation 
are ofinterest. The interface position. ofcourse. depends 

on the temperature and How tields and must be 
determined as part of the solution. A general method of 
solving this free surface problem will be developed 
here, and some qualitative aspects of the combined 
forced and natural convection effects will be presented. 

The restriction to qualitative results is dictated not 
only by the above idealization of the process. but also 
by our present inability to impose accurate boundary 

conditions for mold and spray cooling. Further. in 
many cases our knowledge of several of the key 
material properties is insufficient to permit accurate 

quantitative predictions. 

4. THE MATHEMATICAL MODEL 

A solution of the natural convection field in the 

liquid requires a knowledge of the interface position, 
which determines the domain of the liquid. For 
accurate results a two region model is preferrable. 

i.e. the governing equations are applied separately to 
the liquid and to the solid domain, with the appropriate 

boundary conditions for the field variables and one 
additional boundary condition for the interface 
position. The liquid region equations for a quasi 
incompressible Newtonian fluid with constant material 

properties* are 

The liquid region boundary conditions follow with the 

above idealizations of constant feed flow velocity and 
temperature as 

x=o;o< Y< Y”: U=c;;V=O;T=T, (5) 
? 

o<X<X,;Y=O: i_;=O;V=O;$=O. (6) 

At the interface, assuming no discontinuity in density 
there is : 

Y= P(X): u= U,,V=O;T= r, (7) 

*For a more detailed justification of these assumptions, 
see [ 181. 
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For the solid region, assuming the material properties 

to be constant, but not necessarily the same as in the 

liquid, the energy equation is 
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further simplifications. For these conditions the follow- 

ing relationships were selected to non-dimensionalize 

the above equations: 

x=X/Y,; y= r/Y, (13) 

(8) 

The boundary conditions for the solid region include 
equation (7) and with the above idealization of constant 
casting surface temperature 

O<X<co;Y=Y,: T=T, (9) 

X,<X<cc;Y=O: $0 (10) 

x+co;o< Y< Yo: T=T,. (11) 

The coupling boundary condition for the free surface 
is obtained from conservation of energy across the 
interface : 

-ksz+k,az= p,AH.V,.n. (12) 

Considering thermal boundary-layer thicknesses for 
free convection along a vertical plate in a semi-infinite 
liquid metal [19] one finds that except in very wide 
castings a thermal boundary layer which begins its 
growth at X = 0 along the solid-liquid interface 
Y = P(X) would soon exceed the casting width. The 
liquid region temperature field can, therefore, not be 

treated as a boundary-layer problem, and the full 
elliptic equation must be solved without further 
simplifications. Viscous effects, however, remain 
restricted to a relatively small layer close to the 

boundary. 
In combined forced and free convection flow of 

liquid metals significant peak velocities beyond the slug 

flow field can occur at the interface [20] for the Gr/Re’ 
values of typical casting processes (o 1.5-10). On the 

other hand, with the boundary conditions imposed by 
the interface, the horizontal temperature gradients and 
thus the bouyancy forces will decrease towards the 
bottom of the pool. Further, conservation of mass 
requires that any peak velocities created in the top 
regions of the pool must subside towards the bottom 
of the pool. One of the objectives of this work will be 
to assess whether as a result of these opposing effects 
significant velocity peaks can be expected in typical 
processes of interest. Thus, the flow field boundary 
conditions at the interface constitute an essential part 
of the problem, and they must be satisfied on all sides 
of the pool or cavity. This requires that the flow 
equations be solved in their elliptic form, without 

U-U, 

u=u,; (14) 

T-T, @=_- T- To 

T,-T,’ 
O=----. 

K-To 
(15) 

The choice of characteristic velocity U. remains to be 

made. One could choose the feed flow and withdrawal 
velocity U,,,. However, since attention is primarily 
concentrated here on natural convection it may be more 

appropriate to select the Uo based on these peak 

velocities. 
It was found above that one should expect viscous 

effects to remain restricted to small regions close to 
the wall. Thus, over most of the fluid domain buoyancy 
and inertia effects will dominate, and for Gr/Re’ 
somewhat larger but not orders larger than unity it 
appears that the characteristic velocity Uo resulting 
from a balance of inertia and buoyancy terms would 
be advantageous [ 191: 

Uo = &BATYo). (16) 

With these relationships the non-dimensional govern- 

ing equations are: 
Liquid region: 

au au 
-+-_=o 
ax ay 

( > JFk au au 
-fu P ay 

= _@-af+ 

+&j $+$ ( 1 
( 1 $ij+u ?V av dp, 

ax+%j= -dy 

with boundary conditions: 

x=O;O<y<l.O: u=u=0;0=1~0 

o<x<x,;y=o: “=o;“= .E_o 
dY ’ ay 

y=y^(x): u=v=o;o=o 

Solid region: 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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with boundary conditions: 

y=!:(x): i)= 1.0 

o<X<‘~;y=l~o: (I=0 

PO 

(25) 

(26) 

xp<x< Co;L’=o: --=o 
(7J 

(27) 

X~co;o<y<1~o: o=o. (28) 

In scaling the interface boundary condition it is 
advantageous to express the normal derivatives and the 

normal unit vector of equation (12) in terms of 
temperature gradients : 

~=V~.n;M,L; n= -,$=S,,. (29) 
I 

One then obtains from (12): 

vT,.vT, 

ks /VT,1 kL 
vT,.vT, _____ ~ = -psAH 

IVG 
v++. (30) 

s 

Since the liquid and solid temperature gradients have 
the same direction at the interface, and since V has no 
component in the Y-direction the above equation can 
be simplified to 

c?T,IBX 
WU -WTi = -A AH u, ,vTsI (31) 

which becomes in non-dimensional form 

r?Oi?x 
__ IV701 - pIV@I = -PS ,v”, 

or 

(33) 

where S is the Stefan number, or non-dimensional 
latent heat: 

AH 
S= 

cs(T,- To) 

and p a conductivity-temperature ratio: 

kdT,- T,) 
’ = ks(T,-To)' 

(34) 

(35) 

To assess the order of the various terms of (32) it is 
convenient to write it as 

,ve,(l-,Iq)= -PST!$. (324 

This equation expresses that the latent heat release due 
to freezing of metal passing through the interface (right 
side) equals the heat flux out of the interface into the 
solid minus the heat flux from the liquid into the 
interface (left side). The second term in the left side 

parentheses represents the ratio of heat flux from the 
liquid into the solid. Integrated over the complete 
interface this represents the ratio of superheat to latent 
heat plus superheat. i.e. 

C,(T(_ Ts) 

AH+c,(T,-7;)’ 

For typical feed metal temperatures of 50-lO@K 
above T, the ratio is 0.085-0.17 for pure copper. Similar 
values apply for other metals. For this reason the 
average effect of the liquid temperature field on the 
gross interface position is minor. 

If the overall effect of the liquid temperature gradient 
on the interface equation is small, then the effect of 
convection on the interface position, which enters only 
through the effect of convection on the liquid 
temperature gradient, will be even smaller. This is in 
agreement with Szekelly and Stanek’s observation [16] 

of negligible effect of convection on the solidus front 

position in the freezing of alloys. In the top regions of 
deep pools n, = %/ax//V0 can be small. and thus, the 
right side ofequation (32a) can be small. The magnitude 
of the liquid side heat flux then approaches that of the 
solid side. However. such deep pools which are 
common in the steel industry will not be considered 
here. For solution of the above equations it is 
advantageous to transform the liquid region equations 
into the stream functionjvorticity form. Introducing 

and 

(36) 

(37) 

the continuity equation (17) is satisfied identically and 
two momentum equations (18) and (19) reduce to 

The energy equation now becomes : 

while the boundary conditions can be expressed as 
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5. METHOD OF SOLUTION 

The problem is fully described by the liquid region 

governing equations and boundary conditions (38)-(43), 

the solid region equation and boundary conditions 
(24))(28) plus the interface boundary condition (32). 
To solve this system of simultaneous equations for 
the field variables li/, R, 0 and 0 and for the interface 

position y = g(x) numerical finite-difference methods 
appear to be most practical. The solid as well as the 
liquid region have the boundary y = J?(X) which in 

genera1 does not fall onto a coordinate line. In such 
field problems a coordinate transformation such that 
all boundaries become coordinate lines is highly 

desirable, in particular if finite difference methods are 
used,’ thus avoiding non-even and non-orthogonal 

nodal arrangements at the boundary. Of the great 
multitude of transformations that could be selected for 
this purpose a conformal transformation appeared to 
be most advantageous, since the othogonality of the 
coordinate system is retained, resulting in relatively 
simple transformed equations and single term bound- 
ary conditions. In particular mixed derivatives which 
can cause numerical stability problems are avoided. 

However, the use of such a transform also adds to 
the complexity of the problem since it requires the 
solution of an additional subproblem, namely to find 

the conformal mapping. For a boundary of arbitrary 
shape this will usually require a numerical, iterative 
solution procedure. For the free-surface problem under 

consideration here, which must be solved iteratively, 
this mapping will even have to be recomputed during 
the iteration process. Nevertheless, it was felt that 
adding this numerical mapping problem was justified 
by the increased ease and accuracy of solving the 
governing equations in the mapped domain where all 
its boundaries are coordinate lines. 

The general iterative solution procedure will then be 
as follows : 

(1) Assume a temperature, stream function, and 
vorticity distribution in the liquid domain, and 
temperature distribution in the solid domain. 

(2) Assume a solid-liquid interface position. 
(3) Determine a conformal mapping between the 

solid domain and a transformed domain where all 
boundaries are coordinate lines; do the same for the 
liquid domain. 

(4) Solve the transformed governing equations in the 
transformed plane. 

(5) Transform the solution, and in particular the 
interface temperature gradients, into the physical plane. 

(6) Obtain an improved interface position by 
satisfying the interface boundary condition with the 
temperature gradients from step 5. 

(7) Repeat the iterative sequence beginning with step 
3. 

To employ this procedure the mapped domains for 
both solid and liquid regions must be selected and the 

conformal mappings between the physical domains 

and the mapped domains must be determined, 
including the transformation matrices. The essential 
points of the mapping procedure are summarized in 
Appendix A. Complete details are given in [ 181. Both 
solid and liquid regions were separately mapped by a 
sequence of transformations into parts of the unit 
circle. Theodorsen’s integral equation was applied to 

obtain the conformal mapping of the genera1 interface 
y = y*(x) into the unit circle. Wittich’s method was 

used to solve the integral equation iteratively. This 
method as selected converged for the shallow pools of 

primary interest in this work. Modifications to be 
applied for deep pools are discussed briefly in 
Appendix A and in more detail in [18]. 

6. SOLUTION 1N THE TRANSFORMED PLANE 

The transformation of the governing equations from 

the physical plane to the mapped plane can readily be 

accomplished with the general transformation relation- 
ships between Cartesian and orthogonal curvilinear 
coordinates [25]. With finite difference methods it has 
generally been advantageous to express the transport 

terms of the governing equations in the conservation 
form [26, 271. Using V .v = 0 one obtains from 
(38)-(40) for right-handed curvilinear coordinates 

1 a 
[( 

ay Re -- -__ 
hlh2 ap a$J(Gr) 

1 
= -----V*O (46) 

Pr J(Gr) 

with 

The boundary conditions for the liquid region become: 

+=;;O<p<l: li/=$=O;@=1.0 (48) 

4=O;O<p<l: +$=o;$=o (49) 

o<$<+=l: ~=~=O;O=O 
ap 

(50) 
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The solid governing equation in right-handed 
curvilinear coordinates follows from (24) in the same 
way: 

1 c’y irl) ny s0 

--(------ 

1 z 

h,h2 ?4?p +&#I >=- ) Pv ( (51) 

with the boundary conditions: 

4=$O<p<l: o=o (52) 

qs=O;O<p<l: $0 

O<f#+=l: f#l=l.O. (54) 

The above equations can readily be expressed in finite 
difference form using the general second order central 
difference formulas. Details are given in [18]. The use 
of centered difference formulas in the inertia and 
convection terms is preferable resulting in smaller 

truncation errors of the finite difference approxima- 
tions. However in iterative solutions of this form 

stability considerations impose a limit to relatively 

small values of Gr, Re and Pr. For the low Prandtl 
numbers of liquid metals the restriction to small 

Reynolds and Grashof numbers in the vorticity 
equation is generally the limiting point. In the present 
work with 18 x 18 nodes no stability problems arose 

with Gr up to 106, and higher values have not been 
used. For Rr = 100 rapid divergence occurred in the 

vorticity equation while the method converged well at 
Re = 50. 

For the liquid region the resulting finite difference 
equations present a system of simultaneous nonlinear 
algebraic equations, three for each node point. For the 
solid region one obtains a set of simultaneous linear 
algebraic equations, one for each node point. 

Numerical application of the stream function and 
temperature boundary conditions is straightforward. 
For the vorticity equations direct boundary conditions 
are not prescribed and one must apply (45) at the 

boundaries with (48))(50) to obtain boundary 
conditions in terms of the vorticity. On C#I = 0 one finds 
readily 

#=O: R=O (55) 

while on the other boundaries 

+;: a= _;E& 
2 

and 

p=l: n= 
1 cl*+ -__ 

h: &I* 

The latter two conditions together with d$/&#~ = 0 
on 4 = n/2 and ~?$/ap = 0 on p = 1 can be used with 
the proper finite difference formulas to express the 

boundary values of R in terms of the stream function 
in the vicinity of the boundary. Several approaches 
have been suggested by various workers, as summarized 
by Mallinson and de Vahl Davis [28]. Here the most 
common second order approximation has been used 
in resulting in the following equations for the vorticity 

on the boundaries 4 = ni2 and p = 1.0: 

and 

p=l: Do= -2&(S$-i-i-z) (59) 
1 

where the subscript 0 designates a node point on the 
boundary, while - 1 and -2 refer to node points 1 

or 2 node spacings removed from the boundary. The 
general iterative solution of the finite difference 
equations follows the outline of Section 5. During 
each overall iteration, i.e. for each interface position 
the simultaneous equations for the solid and liquid 
region must also be solved iteratively in inner loops. 

In the liquid region one uses during the ith iteration 
the stream function field of the (i - 1)th iteration to 
compute the nonlinear transport terms. The energy 
and vorticity equations are then solved with these 
coefficients as a quasi-linear set of equations. There- 
after, the “new” vorticity values are used to compute 

the ith stream function field. The alternating direction 
method was used to solve the sets of simultaneous 
equations for both regions. 

With the solution procedure of Section 5 the 

interface boundary condition must be satisfied in the 
physical plane. Thus, it does not have to be transformed 
itself, however, the temperaturegradients along the unit 
circle in the mapped plane ;i@/?p and aO/Cp must be 
transformed into the corresponding interface tempera- 
ture gradients in the physical plane using 

For the iterative solution of the interface boundary 
condition it was found most convenient to consider the 
iteration procedure as a pseudo transient where the 
interface moves with velocity W, normal to itself or by 

As = W,At (61) 

within the pseudo time interval At. From equation (33) 
the equation for this pseudo velocity follows with (60) 
as 

(62) 

and the interface position of thejth iteration will be 

xi = x’-‘+nW,At. (63) 
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A proper solution is obtained when W, goes to zero and 
the interface reaches its steady state position while the 

governing equations are satisfied in their respective 

domains. The existence of one and only one solution 
and the convergence of the iteration procedure to that 
one solution cannot be assured for nonlinear problems 
like the present one. However, in several cases different 

initial conditions were supplied for the same process 
parameters, or previous solutions were disturbed, and 
in every case the convergence occurred to the same 
final solution. Therefore, it appears that the system of 
finitedifference equations and the differential 
equations indeed have one and only one solution at 
least for the range of parameters used here, 

0 < Rr < 50.0 < Gr < 106. and Pr = 0.02. 

7. RESULTS 

To demonstrate the accuracy of the model in 
computing solid-liquid interface positions it is desir- 

able to compare the results to existing solutions. For 
the case of finite latent heat no such exact solutions 
are known. However, an exact solution is available for 

the case of no latent heat, S = 0, with slug flow and 
no free convection in the liquid, Gr = 0, and constant 
and equal material properties in the solid and liquid 
region, i.e. p = 1 and P = RePr, corresponding to the 
problem of linear heat conduction in a moving single 
phase body. 

Figure 2 compares the exact interface with the 

numerical solutions of the present model using 9 x 9 
and 18 x 18 nodal networks. The results are very good 

regarding the overall pool shape, with some difference 
in the curvature of the interface in the upper parts 
of the pool. Figure 3 shows the coordinate lines of the 
mapped plane plotted onto the physical plane, 
indicating that the solid region has only very few node 
points in the corner, y + 1. Therefore, some angular 
coordinate stretching was applied for the solid region 
by adding an additional transformation in the mapped 
plane (see Appendix A). The resulting interface of Fig. 4 
is indeed even closer to the exact solution. 

Next the case of infinite latent heat but with slug 
flow in the liquid was considered, disregarding free 

convection effects, i.e. Gr = 0. In this case one can solve 
the solid and liquid energy equations together with the 
interface boundary conditions, omitting the vorticity 
and stream function equations. This corresponds to the 
case investigated by other authors, using single-region 
models [13-151. The present two-region model avoids 
the inaccuracies of one-region models in particular 
close to the interface [9], however, at this time it is 
restricted to constant temperature boundary conditions 

and to shallow pools. Since the previous single region 
models used different process parameters and boundary 
conditions a direct comparison cannot be made. 

x Numerical 

FIG. 2. Solid-liquid interface for case of no 
latent heat and slug flow in the liquid. 

For this slug flow case the following non-dimensional 

parameters enter the problem: 

P, RePr, S, p 

where RePr is used for the liquid region Peclet number 

to distinguish it from P for the solid region. The present 
model uses different temperature scales for the solid and 
liquid regions, [see equation (15)]. To relate solid and 
liquid region temperatures, a common reference base is 
desired and a new dimensionless temperature is defined 
relating all temperature differences to (T, - Tam,,) : 

T- %b 
T==. 

T,- Tmb 
(64) 

This scale assigns T = 0 as ambient temperature and 
7 = 1.0 as the solidification temperature. 

The cooling rate of the process can then be 

characterized by the temperature difference 

r,- To Ar,=------= 
T,- xmb 

I-T,,. (65) 

The Stefan number can be expressed as 

S=g 
e 

(66) 

where the “ambient Stefan number” 

s* = 
AH 

cs(T,- %mb) 
(67) 



FIG. 3. Coordinate line correspondence hc- 
tween mapped plane and physical plane. 

is strictly material property dependent and varies for 
the most common metals from 0.27 for iron to 1.1 for 

tin, with copper having a value of 0.42. This rearrange- 
ment shows S to characterize the latent heat of the 
material and the process cooling rate. 

FinaIly the conductivity-temperature ratio can be 
expressed as 

(68) 

i.e. it is affected by material properties, feed metal 
superheat and cooling rate. 

Thus, the three independent process variables, 
withdrawal speed U,, superheat (Ts- T,), and the 

outside cooling rate characterized by (T,- To) enter as 
non-dimensional parameters P, Atsll, and AX,. The 
material properties enter through S* for the latent heat 

l.5- 

I----- 
i 

FIG. 4. Solid-liquid interface for case Of no 
latent heat and slug flow in the liquid, with 

angular coordinate stretching. 

and through the conductivity and diffusivity ratios 
kLlks and CQ,,/CC~, where kL/ks Q LX~,& for most metals 
of interest. 

The effect of latent heat on the interface position is 
shown in Fig. 5. At higher levels of latent heat the 

liquid pools get deeper, providing more surface area 
for the increased energy flow out of the interface. At 
the same time the tempe~ture gradients on the solid 
side rf the interface get steeper as indicated in Fig. 6, 
whcg c with increasing S the discontinuity in gradients 

at the interface (z = 1) becomes more pronounced. 
The liquid pools of Fig. 5 could also be considered 

as those for constant latent heat .S* with varying cooling 

rate and feed metal superheat, higher S meaning lower 
AT, and lower superheat AxSH for constant .u. 

The effects of changes in withdrawal velocity (P) and 
cooling rate (AT,) for a material like copper and at 
constant feed metal superheat are shown in Fig. 7. 
The pool depth increases by about the same amount 
as P is doubled or as AZ, is halved. However, with 
higher withdrawal velocity corresponding to an 
increased energy flow across the interface, a longer, 
more curved interface is obtained. 

In Fig. 8 the complete temperature field for a typical 
continuous casting process is presented for later 
reference. Both, the solid (-c -C 1) and the liquid region 
(T > 1) are shown. 
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L -d- 

FIG. 5. Solid-liquid interfaces at 
various levels of latent heat, with 

I 

slug flow in the liquid. 

FIG. 7. Effect ofincreased withdrawal velocity 
and of decreased cooling rate on the interface 

position, with slug flow in the liquid. 

x 

FIG. 6. Axial temperature profiles at various levels of latent 
heat, with slug flow in the liquid. 

The most general form of the model will now be 
considered, including natural convection effects in the 
liquid region. The following runs used the complete 
model with an 18 x 18 nodal network and material 
properties close to those of copper (S* = 0.4, 
kL/ks = a& = 05 and Pr = 062). The process operat- 
ing conditions are P = 05, ALZ~~ = 01 and ATE = 01, 

P=o.5 

ue =so 
Gr=o 

Pr = oa? 

s=40 

p=O+3 

FIG. 8. Solid and liquid temperature field, 
with slug flow in the liquid. 
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-- 
Gr=lo= 

J 

Gr= 104 
Gi/Re=2 

w/R.+ = 6-3 
mm = 20 

P = mi:f?e = 5o,Pr= 002.s = 4’0,#= 05 

FIG. 9. Natural convection streamlines for combined forced and natural convection in the liquid. 

resulting in Rr = 50, S = 4.0 and p = 05. The Grashof 
numbers considered for various levels of natural 
convection* are 0, 10”. lo5 and 106. Figure 9 shows 
the natural convection stream function field for various 

Grashof numbers. In particular at Gr = lo6 a 
significant amount of natural convection is seen to be 
present. The total volume flow due to natural con- 

vection per unit depth of the slab is 

i.e. in this case the peak natural convection velocity is 
almost lo-times larger than the withdrawal speed! For 
the case Gr = lo4 the peak velocity t’, = 0.064 is about 
an order smaller resulting in a value of VJU,. = 0.128 

only. 
Defining a stream function Q, for the combined flow 

field. 

(71) 

or as fraction of the forced flow 
this stream function can be expressed in terms of $ as 

(70) 

Thus, at Gr = lo4 the volume flow due to natural 
convection amounts to only 1.4 per cent of the forced 
flow, however, at Gr = 10’ it represents 87 per cent of 
the forced flow. While the forced flow is uniformly 
distributed over the range 0 < y < 1, all natural con- 
vection flow must pass between the point of /I&,, and 
the interface, as well as between that point and the 
centerline. Accordingly, the natural convection peak 
velocities at Gr = 10’ can well exceed the forced flow 
velocity CT,+.. Indeed, for the natural convection flow 
fields of Fig. 9 one finds for Gr = 10’ at about one 
half the depth of the pool and close to the interface a 
maximum velocity tangential to the interface of 
~1, = 0.47. In terms of the forced flow velocity this is 

Figure 10 shows the stream lines of the combined 

forced and natural convection flow field for several 
Grashof numbers. While the effects of natural 

convection are small at Gr = 104[,/(Gr)/Re = 2] they 
clearly dominate at Gr = 106[,/(Gr)/Rr = 201 with 

backward flow at the center line. 
Figure 11 shows the liquid region temperature field 

for Gr = lo4 and Gr = 106. The convective terms in the 
energy equation are multiplied by the Prandtl number 
and, thus, the effects of the flow field on the temperature 
field will be less pronounced for small Prandtl number 
fluids. At Gr = lo4 the temperature field was virtually 
identical to the slug flow case Gr = 0, of Fig. 8. And 
even at Gr = 106, with drastically changed flow field, 
the effect on the temperature field was not very severe. 

v, uo 4(Gr) In the top region of the pool, the isotherm positions 

I, - r;,. 
---a,=Rt~‘=20x047=9.4 

7 are only slightly different from those for Gr = 0. In the 
bottom region of the pool the isotherms are “swept” 

___ _~ - ~__~.~~ -- ~ _.-. __~_~ 
*For copper, with the superheat given above and for a 

upward by the backward flow. The temperature 

characteristic dimension Y. = 1 cm the Grashof number gradients in this part of the pool are less than half of 

would be about 3 x 105. those without natural convection. 
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FIG. 10. Streamlines of the combined forced and natural convection flow field. 

P=o.5;Rc=50;R = o-02; s = 4.o:L(= 03 

FIG. 11. Temperature field with forced and natural convection in the liquid. 

The solid-liquid interface position with (33) is 
affected by * 

-;+fig. 

In top regions of the pool the liquid side gradient 
a@/& changes only very little with free convection, 

and at the bottom the liquid side term pl%/&r( is very 
small compared to the solid side term 1X9/&1. The 
changes in the liquid temperature field due to natural 
convection should, therefore, not affect the interface 
position much. In the present runs they were well 
within plotting accuracy, and thus, insignificant. For 
pools deeper than the present runs the natural 
convection field could conceivably be stronger; how- 
ever, the temperature gradients towards the bottom 
would then generally be even smaller. The negligible 

effect of the natural convection field on the interface 

corresponds to the expectations of Section 2. However, 
the flow field in itself remains of interest, due to its 
potential effects on the solidification process and on the 
ultimate structure of the casting. 

8. IMPLICATIONS 

The general analysis developed here offers more 

accurate results than can be obtained with single region 

models of the temperature and flow fields in continuous 
casting processes. The model is the first one known to 
include natural convection effects in the .liquid pool of 
a continuous casting process. In the present form of the 
model the investigations generally had to be restricted 
to shallow pools, xp < 1.3, and to a uniform forced flow 

Re < 50. 
The results show that for liquid metals even in such 

shallow pools natural convection flows of significant 
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magnitude can arise, and that the peak velocities of the 
natural flow field. relative to the motion of the casting, 
can even exceed the forced flow withdrawal speed. 

Depending on the type of dendrite structure and on the 
strength of the dendrite tips and arms this can have 

significant effects on the ultimate cast structure. for 
instance due to arms being broken off. and being swept 
downward into the bottom of the pool. 

Results further show that the effect of the natural 
convection flow field on liquid region temperatures 
remains relatively minor in top regions of the pool. 

However, it does further enhance the formation of an 
almost isothermal region at the bottom of the pool, in 

particular as the pool depth increases. 
Through control of the governing nondimensional 

parameters, and in particular through the superheat, 

A%“> and the Grashof number. Cr. one can affect the 
strength of the natural convection flow field to obtain 
a quiet uniform forced flow. or a strongly stirred pool. 

even with upward flow at the center line, whichever 
is desired. 

Within the range of the parameters investigated, it 
was found that even for a strong natural convection 
field there was almost no effect on the solid-liquid 
interface position. It is expected that this result would 
also hold for some deeper pools and higher Reynolds 
numbers. Thus, for known or well estimated pool 

shapes, natural convection effects may often be studied 
by solving the liquid region equation only. with 

assumed interface position, thus avoiding the expensive 
iterative procedure of recomputing pool shapes. 
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APPENDIX A conditions at infinity one can apply the inversion 

Conformal Mapping of the Solid and the Liquid Region 1 

To employ the above procedure the mapped domains 
[ =-, (A2) 

X 
and a corresponding sequence of mappings must be mapping the solid conformally into the interior of the unit 
selected. The selected sequence of mappings is shown circle. This latter transformation includes a reflection about 
schematically in Fig. Al : 

For the liquid region a logical choice is to map the liquid 
the v-axis, and the first quadrant of the unit circle in the 

pool plus its mirror image in x < 0 into the unit circle. 
mapped plane will now correspond to the negative half of 
the solid domain in the physical plane. 

T ‘*Premappinp 
w.sinh $ I 

Physical plane 

T3’* Map exterior Of donto exterior 

of unit circle C” 

T3L = Map interior of t’ onto 

interior of unit circle C” 

Iv Iv 

T4S Solid inversion TX= Identity transformation 

4 C.E+iT) -pP lc 
FIG. Al. Sequence of mappings. 

A procedure to transform the solid region into a regular 
domain is not obvious, and several possibilities exist. It was 
decided to proceed here as follows: The complete slab of 
liquid and solid domain x > 0, - 1 < y < + 1, can be 
transformed into the half plane II > 0 by the conformal 
mapping 

w = sinh?z. 
2 

(AI) 

The solid-liquid interface C is mapped here into the 
contour C’. Thereafter, applying a general conformal 
mapping which maps the exterior of C’ and its mirror image 
in u < 0 onto the exterior of the unit circle C”, one obtains 
a regular domain for the solid, including the point at infinity. 
To avoid the numerical difficulty of satisfying boundary 

Once this sequence of mappings has been selected for the 
solid region, it is convenient, but by no means necessary, 
to apply the pre-mapping of equation (Al) to the liquid 
region as well. Similarly, for convenience in notation an 
identity transformation T4, < = x has been added for the 
liquid, corresponding to the solid inversion equation (A2). 

For the transformation of the governing equations an 
overall transformation matrix between the physical plane 
and the mapped plane will be required. It will be convenient 
to include into this matrix a transformation from Cartesian 
to polar coordinates in the w-plane. Furthermore, if desired, 
one could add a coordinate stretching transformation in the 
mapped plane to obtain finer node spacing in the region 
of steep gradient. 

A method must be devised for the transform T3, con- 
formally mapping, for the solid, the exterior of the arbitrary 
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contour C’ onto the exterior of the unit circle, and for 
the liquid. the interior of C’ onto the interior of the unit 
circle. Several methods are available for this purpose [18] 
and Theodorsen’s integral equation appeared most desirable 
for the problem at hand. 

In using this method the conformal mapping between 
pomts of the w plane and the x plane L,; = f(x) is expressed 
in the form 

F(X) = In $) = U(a, li/)+ iV(rr, I/, (A3) 

where [/ and V are the radius ratio function 

r[@(o. (I/)] 
U(u, Y) = ln ___ 

CJ 
(A4) 

and its harmonic conjugate, the angular distortion function 

V(u,Y) = O(o,Y)-Y; V(a,O) = 0. (A% 

With the curve C’ in the w plane expressed in the form 
r(O) Theodorsen’s integral equation describes the conformal 
mapping between the unit circle c” in the x plane and the 
curve c’ in the w-plane in terms of the function O(Y): 

O(Y) = k&P) 
s 

Zn 

0 
In r[O(r)] cot lf?dr (A6) 

The plus sign applies for the interior to interior mapping, 
and the minus sign for the exterior to exterior case. The 
integral is to be taken as a Cauchy principal value. 

The solution to the above integral equation determines, 
in principle, the desired conformal mappings by providing 
the radius ratio function and the angular distortion 
function on the unit circle. The U and Vin the interior of 
the unit circle then follow directly from Poisson’s integral 
formula: 

F(u, Y) = i :, F(P) 
l-2 

I-20cos(r-Y)+ul 
dr (A?) 

where F represents either (i or V. Again, the plus sign 
applies for the interior to interior case of the liquid region 
and the minus sign for the exterior case of the solid. 

For domains with arbitrary boundaries closed form 
solutions of(A6) are usually not available and the nonlinear, 
singular integral equation must be solved by numerical 
methods. Several methods are available to solve this integral 
equation. A comparison by Gaier [21] showed Wittich’s 
method [22, 231 to give the best results. The application 
of this method to the present problem is outlined in detail 
in [Ml. Using a truncated Fourier series to approximate 
In [r(O)] the solution to (A6) at 2N discrete points on the 
unit circle 

Y,=q,; q=;; -N+lC kCN (A@ 

is obtained by iterative application of the 2N nonlinear 
simultaneous equations: 

O”‘(Y,)- =kq+$fl=~+ilnr[O’(r~)]cotk~q. (A9) 

(k-p odd) 

For the present special case of quarter circle symmetry. 
(A9) can be reduced to 

with 

0 < p < a = N/2 (N even) : 

o’+‘(~~)=kqf~iT~+T~+T~~ 

0 
T, = 

; keven 

lnr(O)cotkq; k odd 

(AlO) 

(AlOa) 

n-k- 1 

Tz = 1 lnr[OL(t,+,)] [cot (2k+p)q-cotpq] 
!L=i 

1~ odd) 
(AlOb) 

k-I 

+ 1 Inr[O’(t,_,)] [cot(2k-p)q+cotpq] 
p=I 

({‘odd) 

T3 = 

: k-neven 

(AlOc) 

The brackets of (AlOb) can be expressed in alternate, 
algebraically more compact forms; however, for numerical 
computations the above form was found to be most 
convenient. 

In the present problem the derivative of Inr(O) with 
respect to 0 will be discontinuous at 0 = *n/2. The 
truncation error of (A9) is then 0 (l/n) [21]. However, since 
n grows only linearly as the discretization is refined one 
can select n sufficiently large to get very accurate solutions 
as evidenced by the trial mappings of [lS], Appendix F. 
Further considerations regarding the existence of solutions 
and the convergence of the sequence (AIO) are also given 
in [18]. The evaluation of c’ and V in the interior or 
exterior of the unit circle by numerical integration of (A7) 
is straightforward, except that close to the unit circle the 
Poisson kernel gets very peaked and special care must be 
taken to obtain results of sufficient accuracy. Several ways 
to achieve this are discussed in [18]. Here a separate 
integration over the region of peaked kernels with a very 
fine nodal spacing, and with a coarser spacing over the 
remainder of the integration domain provided sufficient 
accuracy. 

To transform the governing equations of the physical 
plane into the mapped plane the transformation must be 
given, connecting the (x, y) coordinate system of the physical 
plane with the p, 4) coordinate system of the mapped plane: 

The scale factors follow from the matrix coefficients as 
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To compute the matrix coefficients and scale factor one 
must have in addition to the mapping functions ci and V 
also their derivatives. In the interior or exterior of the unit 
circle these were obtained by differentiating (A7). On the 
unit circle they were computed from a centered second 
order finite difference equation. Possible refinements of this 
procedure are discussed in [ 181. 

The pre-mapping transform T’ induced some limitations 
in the method. This transformation is used to extend the 
solid domain over the complete exterior of the interface, 
C’, in Fig. Al. It has singular points at z = Ti, where the 
right angle between the 1; axis and the slab surface y = i 1 
is mapped into an angle of 180’. For deep pools the interface 

tangent in the w plane will at this point intersect the u-axis 
at a very shallow angle, causing convergence problems in 
the numerical solution of (AlO). 

For deeper pools a different mapping procedure would 
have to be used for the solid or the relatively simple 
governing equation of the solid (24) could be solved 
directly in the physical domain using a noneven nodal 
spacing [24]. For the liquid region this limitation does not 
apply, T’ is only used there for convenience and could be 
omitted permitting the mapping of a great variety of liquid 
pools. 

For the present work shallow pools were of primary 

interest andthislimitation was therefore not essential. 

SOLUTION DU PROBLEME BIDIMENSIONNEL DE LA SOLIDIFICATION 
INCLUANT LES EFFETS DE CONVECTION DANS LA REGION LIQUIDE 

Resume-On considtre les champs de temp&ature et de vitesse durant la solidification d’un metal pur 
dans une plaque mobile pour application au processus de coulCe continue. L’analyse considire la 
convection naturelle dans le noyau liquide. 

De forts courants de convection naturelle se produisent & des nombres de Grashof de I’ordre de 
105-106. Nkanmoins pour les domaines de paramttres &tudi&s la convection naturelle a un effet 

negligeable sur la position de l’interface solide-liquide. 
On prbsente des aspects qualitatifs nombreux sur l%coulement mixte dans le noyau liquide. M&me 

pour une convection naturelle trts intense, I’effet du champ de vitesse sur le champ de tempkrature reste 
relativement rtduit, sa tendance principale est de favoriser la formation d’une rkgion isotherme g la 

basedunoyau. 

DIE L&SUNG EINES ZWEIDIMENSIONALEN ERSTARRUNGSPROBLEMS UNTER 
BERtiCKSICHTIGUNG DER KONVEKTION IN DER FLUSSIGKEIT 

Zusammenfassung-Zur Simulation eines kontinuierlichen GieDvorgangs wird das Temperatur- und 
Strijmungsfeld wLhrend der Erstarrung eines reinen Metalles in einen beweglichen Stab betrachtet. 

Bei Grashof-Zahlen von lo5 bis lo6 liegt eine starke freie Konvekti6n vor, die im untersuchten Bereich 
allerdings nur einen unwesentlichen EinfluB auf die Lage der Erstarrungs-Phasengrenzflgche hatte. 

Die Oberlagerung von erzwungener und freier Konvektion wird unter qualitativen Gesichtspunkten 
dargelegt. Selbst bei sehr starker freier Konvektion iibt das Striimungsfeld nur einen relativ geringfiigigen 
EinfluD auf das Temperaturfeld aus, wobei die Tendenz zur Bildung einer nahezu isothermen Fliissigkeits- 

region in der NBhe der Erstarrungs-Phasengrenzfliche verstirkt wird. 

PEIUEHME ABYMEPHOR 3AAAYM 0 3AMEP3AHMM nPM HAJIMYMM 
KOHBEKUMM B XMflKOCTM 

AHHoTaqm- C LWIbK) MHTeHCM&iKaUMH HenpepblBHOrO npouecca JTHTbll paCCMaTpHBaeTC5l none 

TeMnepaTyp AcKopocTefinpM 3aTBepneBaHmi~~cToroMeranna~nB~mymePcflnn~Te. B 3ro~cny4ae 
yWTblBaeTC5I BJlARHMe eCTcCTBcHHOti KOHBeKUAH B pe3epByape C XKMAKOCTbH). B AlIana30He 'IMCeJl 
rpaCrO4a 10': lo6 MMCIOT MeCTO CMnbHble nOTOKM npll eCTeCTBeHHOfi KOHBeKL,MA. OAHaKO, B 

HCCJIeAyeMOMAMana30HenapaMeTpOBeCTeCTBeHHaSl KOHBeKUHR He3HaYWTe~bHOBJlMIleT Ha PaCnOnO- 

XeHMenoaepxHocTM pa3nena: -iaepnoeTeno-XnnKocTb. 
npMBOASTCX pa3JWiHble KaYeCTBeHHble aCneKTbl nOnR CKOpOCTefi np!4 BblHyXAeHHOti H eCTe- 

CTBCHHOA KOHBCKUMA B pe3cpByapcC XMAKOCTbtO. 

AaXe npH BeCbMa AHTeHCMBHOti eCTeCTBeHHOfi KOHBeKUHI( none CKOpOCTeii He3Ha',HTenbHO 

BnMfleT Ha none TeMnepaTyp A, B OCHOBHOM, CnOCO6CTByeTO6pa30BaHWO noyTH n30TepMnYecKok 
o6nacTM B HHrnHei% YacTn pesepsyapa. 


